Moving Average Model Wiki
Średnia ruchoma - MA. BREAKING DOWN Średnia ruchoma - MA. Za przykład SMA należy wziąć pod uwagę zabezpieczenia z następującymi cenami zamknięciami powyżej 15 dni. Week 1 5 dni 20, 22, 24, 25, 23.Week 2 5 dni 26, 28 , 26, 29, 27.Week 3 5 dni 28, 30, 27, 29, 28. 10-dniowe średnie średnie ceny zamknięcia za pierwsze 10 dni jako pierwszy punkt danych Następny punkt danych spadł najwcześniej cena, dodaj cenę w dniu 11 i średnią, i tak dalej, jak pokazano poniżej. Jak wcześniej zauważyłem, wahania kursów bieżącej ze względu na fakt, że opierają się one na wcześniejszych cenach, tym dłuższy jest czas dla MA, tym większe opóźnienie 200-dniowa MA będzie miała znacznie większy stopień opóźnienia niż 20-dniowy MA, ponieważ zawiera ceny za 200 dni. Długość MA do wykorzystania zależy od celów handlowych, przy krótszych terminach sprzedaŜy krótkoterminowej i długoterminowych instrumentów pochodnych bardziej dostosowanych do inwestorów długoterminowych Dwudziestopięcioletnie studia magisterskie są szeroko stosowane przez inwestorów i przedsiębiorców, z przerwami powyżej i poniżej tej średniej ruchomej koniunktury jest ważnym sygnałem handlowym. Mają one również ważne emisje transakcyjne na własną rękę, lub gdy dwie średnie przecina rosnąca MA wskazuje, że bezpieczeństwo jest w trendzie wzrostowym, a malejąca MA wskazuje na to, że jest w trendzie spadkowym Podobnie, dynamika wzrostu jest potwierdzony przejściowym zwrotem, który pojawia się, gdy krótkoterminowa krzywa MA przecina powyżej długoterminowego Momentu Pieniężnego MA potwierdza się krzywą spadkową, która pojawia się, gdy krótkoterminowa MA przecina poniżej długoterminowego MA. Moving średniej i wyrównania wykładniczego modeli. Jest to pierwszy krok w wychodzeniu poza średnie modele, przypadkowe modele chodu i modele trendów liniowych, nieuzasadnione wzorce i trendy mogą być ekstrapolowane przy użyciu modelu poruszającego się średnio lub wygładzającego Podstawowym założeniem za modelami uśredniania i wygładzania jest to, że szereg czasowy lokalnie stacjonarne z powolnie zmieniającą się średnią W związku z tym przy ruchomych lokalnych średnicach szacujemy bieżącą wartość średniej, a następnie wykorzystujemy ją jako prognozę dla najbliższej przyszłości. być traktowany jako kompromis pomiędzy średnim modelem a modelem losowo-chodzić bez drift Ta sama strategia może być użyta do oszacowania i ekstrapolacji tendencji lokalnej Średnia ruchoma jest często nazywana wygładzoną wersją oryginalnej serii, ponieważ krótkoterminowe uśrednianie powoduje wyrównywanie uderzeń w oryginalnych seriach Dzięki dostosowaniu stopnia wygładzania szerokości średniej ruchomej możemy mieć nadzieję, że uderzymy w jakiś optymalny balans między osiągami średnich i przypadkowych modeli chodu najprostszym rodzajem uśrednionym modelem jest średnia ruchoma równoważna. Prognoza dla wartości Y w czasie t1, która jest dokonywana w czasie t równa się zwykłej średniej z ostatnich obserwacji m. Tutaj i gdzie indziej będę używać symbolu Y-hat do prognozowania serii czasowej Y dokonanej najwcześniej w poprzednim terminie przez dany model Średnia ta jest skoncentrowana w przedziale 1 2, co oznacza, że oszacowanie lokalna średnia będzie miała tendencję do opóźnienia w stosunku do prawdziwej wartości średniej lokalnej o około m 1 2 okresy Tak więc mówimy średni wiek danych w prostej średniej ruchomej wynosi m 1 2 w stosunku do okresu, na który obliczana jest prognoza jest to kwota czasu, w jakim prognozy będą się spóźniały za punktami zwrotnymi w danych Na przykład, jeśli uśrednimy ostatnie 5 wartości, prognozy będą wynosić około 3 okresy późne w odpowiedzi na punkty zwrotne Zauważ, że jeśli m 1, prosty średni ruchowy model SMA jest równoważny modelowi losowego spaceru bez wzrostu Jeśli m jest bardzo duże porównywalne z długością okresu szacowania, model SMA jest równoważny modelowi średniemu Tak jak w przypadku dowolnego parametru modelu prognozowania, zwyczajowo dostosować wartość ki n Aby uzyskać najlepsze dopasowanie do danych, tzn. najmniejsze błędy prognozy przeciętnie. Oto przykład serii, która wydaje się wykazywać przypadkowe wahania wokół średnio zróżnicowanej średniej. Po pierwsze, spróbuj dopasować ją do przypadkowego spaceru model, co odpowiada prostej średniej ruchomej 1 terminu. Model przypadkowego spaceru reaguje bardzo szybko na zmiany w serii, ale w ten sposób pobiera dużo hałasu w danych losowych wahań, jak również sygnału lokalnego średnia Jeśli weźmiemy pod uwagę prostą średnią ruchomą wynoszącą 5 terminów, otrzymujemy gładsze wyobrażenia prognoz. 5-letnia prosta średnia ruchoma daje w tym przypadku znacznie mniejsze błędy niż model losowego spaceru w tym przypadku Przeciętny wiek danych w tym prognoza wynosi 3 5 1 2, tak że ma ona tendencję do opóźnienia za punktami zwrotnymi o około trzy okresy Na przykład, spadek koniunktury wydaje się mieć miejsce w okresie 21, ale prognozy nie odwracają się do kilku okresów później. Notyczność, długoterminowe prognozy z mod SMA mod El jest poziomej prostej, podobnie jak w modelu random-walk. Model SMA zakłada więc, że nie ma tendencji do danych. Jednak prognozy z modelu random walk są po prostu równe ostatniej obserwowanej wartości, prognozy od model SMA jest równy średniej ważonej z ostatnich wartości. Obciążenia ufności obliczone przez Statgraphics w odniesieniu do długoterminowych prognoz dotyczących prostej średniej ruchomej nie są szersze w miarę wzrostu horyzontu prognozowego. To oczywiście nie jest poprawne Niestety, nie ma podstaw teorii statystycznej, która mówi nam, jak przedziały ufności powinny poszerzać się w tym modelu Jednak nie jest zbyt trudno obliczyć empiryczne szacunki dopuszczalnych granic dla prognoz dłuższego horyzontu Na przykład można utworzyć arkusz kalkulacyjny, w którym model SMA byłby wykorzystywany do prognozowania 2 kroków do przodu, 3 kroków do przodu, itd. w ramach historycznej próbki danych Można następnie obliczyć próbkowe odchylenia standardowe błędów w każdej prognozie h orizon, a następnie skonstruuj interwały zaufania na potrzeby prognoz długoterminowych przez dodawanie i odejmowanie wielokrotności odpowiedniego odchylenia standardowego. Jeśli spróbujemy 9-letnią prostą średnią ruchomej, otrzymamy jeszcze gładsze prognozy i bardziej opóźniamy efekt. Średni wiek to teraz 5 okresów 9 1 2 Jeśli weźmiemy 19-letnią średnią ruchliwą, średni wiek wzrasta do 10.Notice, że rzeczywiście prognozy są teraz w tyle za punktami zwrotnymi o około 10 okresów. Jaka ilość wygładzania jest najlepsza dla tej serii Oto tabela, w której porównano ich statystykę błędów, również zawierającą średnią 3-miesięczną. Model C, 5-letnia średnia ruchoma, daje najniższą wartość RMSE przez mały margines w średnim okresie 3-letnim i 9-dniowym, a ich inne statystyki są prawie identyczne Więc wśród modeli o bardzo podobnych statystykach błędów możemy wybrać, czy wolelibyśmy nieco lepszej reakcji lub trochę bardziej gładko w prognozach. Powrót do góry strony. Brown s Simple Exponential Smoothing wykładniczy ważony średniej ruchomej. Opisany powyżej prosty model średniej prędkości ma niepożądaną właściwość, która traktuje ostatnie obserwacje równomiernie i całkowicie ignoruje wszystkie poprzednie obserwacje Intuicyjnie, dane z przeszłości powinny być dyskontowane w sposób bardziej stopniowy - na przykład najnowsze obserwacje powinny trochę więcej niż druga ostatnia, a druga najnowsza powinna mieć trochę więcej wagi niż trzeci ostatni, i tak dalej Prosty wygładzający model SES osiąga to. Oznacza to, że wygładzanie stale zmienia liczbę pomiędzy 0 a 1 Jednym ze sposobów zapisania modelu jest zdefiniowanie serii L, która reprezentuje poziom bieżący tj. Lokalna średnia wartość serii, szacowana na podstawie danych do dnia dzisiejszego. Wartość L w czasie t jest obliczana rekurencyjnie od własnej poprzedniej wartości, jak ta. Tak więc bieżąca wygładzona wartość jest interpolacją między poprzednią wygładzoną wartością a bieżącą obserwacją, gdzie kontroluje bliskość interpolowanej wartości najbardziej średnia prognoza Prognoza na następny okres jest po prostu aktualną wygładzoną wartością. W równym stopniu możemy wyrazić następną prognozę bezpośrednio w odniesieniu do poprzednich prognoz i wcześniejszych obserwacji, w każdej z następujących równoważnych wersji W pierwszej wersji prognoza jest interpolacją pomiędzy poprzednią prognozą a wcześniejszą obserwacją. W drugiej wersji następna prognoza uzyskuje się przez dostosowanie poprzedniej prognozy w kierunku poprzedniego błędu w ułamkowej wartości. Jest to błąd popełniony w czasie t W trzecim projekcie prognoza jest wykładnicza ważona, tzn. zdyskontowana średnia ruchoma ze współczynnikiem dyskonta 1. Wersja interpolacyjna formuły prognozowania jest najprostszym rozwiązaniem, jeśli model jest stosowany w arkuszu kalkulacyjnym, który mieści się w jednej komórce i zawiera odwołania do komórek wskazujące na poprzednią prognozę, poprzednią obserwacja i komórka, w której zachowana jest wartość. Zwróć uwagę, że jeśli 1, model SES jest równoważny losowemu modelowi spacerowemu z hout growth Jeśli 0, model SES jest równoważny modelowi średniemu, przy założeniu, że pierwsza wygładzona wartość jest równa średniej. Powrót na górę strony. Średni wiek danych w prognozie wygładzania wykładnicza prostokątnego wynosi 1 względny do okresu, w którym obliczana jest prognoza To nie powinno być oczywiste, ale można to łatwo wykazać przez ocenę nieskończonej serii W związku z tym prosta prognoza średniej ruchowej skłania się do punktów zwrotnych o około 1 okresy Przykładowo, gdy 0 5 opóźnienie to 2 okresy, gdy 0 2 opóźnienie wynosi 5 okresów, gdy 0 1 opóźnienie wynosi 10 okresów, itd. Dla danego wieku średniego tj. Czas opóźnienia, prosta predykcyjna wygładzająca prognoza SES jest nieco wyższa niż zwykłe poruszanie się średnia prognoza SMA, ponieważ w ostatniej obserwacji obserwuje się relatywnie większą wagę - co nieco odpowiada na zmiany zachodzące w niedawnej przeszłości Przykładowo model SMA z 9 terminami i model SES z 0 2 mają średni wiek z 5 dla da w swoich prognozach, ale model SES wiąże się z ostatnimi 3 wartościami niż model SMA, a jednocześnie nie zapominają o wartościach powyżej 9 okresów, jak pokazano na poniższej wykresie. Inna ważna przewaga model SES w modelu SMA polega na tym, że model SES wykorzystuje parametr wygładzania, który jest ciągle zmienny, dzięki czemu można z łatwością zoptymalizować przy użyciu algorytmu solver w celu zminimalizowania średniego kwadratu. wynosiła 0 2961. Średni wiek danych w tej prognozie wynosi 1 0 2961 3 4 okresów, co jest zbliżone do średniej 6-letniej średniej ruchomej. Prognozy długoterminowe z modelu SES to horyzontalna linia prosta, jak w modelu SMA i model losowego chodzenia bez wzrostu Jednak należy zauważyć, że przedziały ufności obliczane przez Statgraphics różnią się w rozsądny sposób i że są one znacznie węższe niż przedziały ufności dla rand om walk model Model SES zakłada, że seria jest nieco bardziej przewidywalna niż model losowego spaceru. Model SES jest w rzeczywistości przypadkiem specjalnym modelu ARIMA, więc statystyczna teoria modeli ARIMA stanowi solidną podstawę do obliczania przedziałów ufności dla Model SES W szczególności model SES jest modelem ARIMA z odmienną różnicą, terminem MA 1, a nie określonym terminem znanym jako model ARIMA 0,1, bez stałego Współczynnik MA 1 w modelu ARIMA odpowiada ilość 1 - w modelu SES Przykładowo, jeśli pasujesz do modelu ARIMA 0,1,1 bez stałej wartości w analizowanych seriach, szacowany współczynnik MA 1 wyniósł 0 7029, czyli prawie o jeden minus 0 2961. Możliwe jest dodanie założenia niezerowej stałej tendencji liniowej do modelu SES W tym celu wystarczy podać model ARIMA z jedną różniczką różniczkową i termin MA 1 ze stałą, tj. Model ARIMA 0,1,1 ze stałymi prognozami długoterminowymi a następnie mają tendencję, która jest równa średniej tendencji obserwowanej w całym okresie szacowania Nie można tego zrobić w połączeniu z dostosowaniem sezonowym, ponieważ opcje sezonowej korekty są wyłączone, gdy typ modelu jest ustawiony na ARIMA. Można jednak dodać stałą długo tendencja wykładnicza do prostego modelu wyrównania wykładniczego z sezonową korektą lub bez sezonu z zastosowaniem opcji dostosowania inflacji w ramach procedury prognozowania Odpowiednia stopa wzrostu inflacji w danym okresie może być oszacowana jako współczynnik nachylenia w modelu tendencji liniowej dopasowany do danych w w połączeniu z naturalną transformacją logarytmową lub może opierać się na innych, niezależnych informacjach dotyczących perspektyw wzrostu długoterminowego Powrót na górę strony. Brown s Linear czyli podwójne wyrównywanie wyrównania. Modele SMA i modele SES zakładają, że nie ma tendencji do jakiegokolwiek rodzaju w danych, które zwykle są OK lub przynajmniej nie-zbyt-kiepskie w przypadku prognoz jednostopniowych, gdy dane są stosunkowo noi sy i mogą być modyfikowane w celu uwzględnienia stałej tendencji liniowej, jak pokazano powyżej. Co z trendami krótkoterminowymi Jeśli seria wykazuje zmienną szybkość wzrostu lub cykliczny wzór, który wyróżnia się wyraźnie na tle hałasu, a jeśli istnieje potrzeba prognozowanie bardziej niż 1 okresu do przodu, a następnie oszacowanie lokalnej tendencji może być problem Prosty model wyrównywania wykładniczego może być uogólniony w celu uzyskania liniowego modelu wygładzania wykładniczego mierzącego lokalną estymację zarówno poziomu, jak i tendencji. Najprostszy trend zmieniający się w czasie model jest brązowym linearnym wykładnikiem wykładniczym, który wykorzystuje dwie różne wygładzone serie, które są skoncentrowane w różnych punktach czasu Formuła prognozowana oparta jest na ekstrapolacji linii przez dwa centra Wyrafinowaną wersją tego modelu, Holt s, jest omówione poniżej. Forma algorytmowa liniowego modelu wygładzania wykładanego przez Brown'a, podobnego do prostego modelu wygładzania wykładniczego, może być wyrażona w wielu różnych, ale formy kwantancyczne Standardowa forma tego modelu jest zwykle wyrażana w następujący sposób Niech S oznacza pojedynczo wygładzoną serię otrzymaną przez zastosowanie prostego wygładzania wykładniczego do serii Y Oznacza to, że wartość S w okresie t jest podana przez. Przypomnijmy, że w prostym wyrównaniu wykładniczym byłaby to prognoza dla Y w okresie t 1 Następnie niech S oznacza podwójnie wygładzoną serię otrzymaną przez zastosowanie prostego wyrównania wykładniczego przy użyciu tego samego do serii S. Na koniec prognoza dla Y tk dla dowolnego k 1, daje te plony e 1 0 tj. oszukiwać nieco i niech pierwsza prognoza będzie równa rzeczywistej pierwszej obserwacji, a y 2 Y 2 Y 1, po której generowane są prognozy przy użyciu powyższego równania To daje takie same dopasowane wartości jako wzór oparty na S i S, jeśli te ostatnie zostały uruchomione przy użyciu S 1 S 1 Y 1 Ta wersja modelu jest używana na następnej stronie, która ilustruje kombinację wygładzania wykładniczego z dostosowaniem sezonowym. Holt s Linear Exponential Smoothing. Brown s Model LES oblicza lokalne szacunki poziomu i tendencji, wygładzając ostatnie dane, ale fakt, że robi to z pojedynczym parametrem wygładzania, ogranicza wzorce danych, które jest w stanie dopasować do poziomu i tendencji nie można zmieniać w niezależne modele Model LES Holt'a rozwiązuje ten problem przez uwzględnienie dwóch stałych wygładzania, po jednym dla poziomu i jednego dla trendu W dowolnym momencie t, podobnie jak w modelu Browna, istnieje szacunkowy poziom L t na poziomie lokalnym i szacunek T t lokalnej tendencji Tutaj są one obliczane rekurencyjnie z wartości Y obserwowanej w czasie t oraz poprzednich szacunków poziomu i tendencji przez dwa równania, które stosują wyrównywanie wykładnicze osobno dla nich. Jeśli szacowany poziom i tendencja w czasie t-1 są odpowiednio L t 1 i T t 1, wówczas prognoza dla Y t, która została dokonana w czasie t-1, jest równa L t-1 T t-1 Gdy rzeczywista wartość jest zaobserwowana, zaktualizowane oszacowanie poziom jest obliczany rekurencyjnie przez interpolowanie pomiędzy Y t a jego prognozą, L t-1 T t-1, przy użyciu odważników i 1. Zmiana szacowanego poziomu, mianowicie L t L t 1 może być interpretowana jako hałaśliwy pomiar trend w czasie t Uaktualniony szacunek trendu oblicza się rekurencyjnie przez interpolację między L t L t 1 i poprzedni szacunek trendu T t-1 przy użyciu odważników i 1. Interpretacja stała wygładzania trendu jest analogiczna do stałej wygładzania poziomu Modele o małych wartościach zakładają, że tendencja zmienia się tylko bardzo powoli w czasie, a modele o większym założeniu, że zmienia się szybciej Model z dużą grupą uważa, że dalekiej przyszłości jest bardzo niepewna, ponieważ błędy w oszacowaniu tendencji stają się bardzo ważne, gdy prognozuje się więcej niż jeden rok naprzód Powrót do początku strony. Stałe wygładzania i można je oszacować w zwykły sposób minimalizując średnie kwadratowe błędy prognoz 1-krotnego wyprzedzenia Jeśli to nastąpi w programie Statgraphics, szacunki szacuje się na 0 3048 i 0 008 Bardzo mała wartość oznacza, że model zakłada bardzo niewielką zmianę tendencji z jednego okresu do następnego, więc w zasadzie ten model próbuje oszacować długoterminową tendencję Przez analogię do pojęcia średniego wieku danych używanych do szacowania t lokalny poziom szeregu, średni wiek danych wykorzystywanych do oszacowania tendencji lokalnej jest proporcjonalny do 1, choć nie jest do niego równy. W tym przypadku okazuje się, że wynosi on 1 0 006 125 To jest bardzo dokładna liczba ponieważ dokładność szacunkowa nie jest naprawdę 3 miejsc po przecinku, ale ma ten sam ogólny porządek wielkości jak wielkość próbki 100, więc model ten jest uśredniony w odniesieniu do dość dużej liczby historii w szacowaniu tendencji Wykres prognozy poniżej pokazuje, że model LES szacuje nieco większą tendencję lokalną na końcu serii niż stała tendencja szacowana w modelu tendencji SES Również szacunkowa wartość jest niemal identyczna z wartością otrzymaną przez dopasowanie modelu SES z tendencją lub bez , więc jest to prawie ten sam model. Jest to wyglądające jak uzasadnione prognozy modelu, które ma być szacowaniem tendencji lokalnej Jeśli zauważysz tę fabułę, wygląda na to, że lokalny trend spadł w dół pod koniec seria Wh jak się zdarzyło Parametry tego modelu zostały oszacowane przez zminimalizowanie kwadratu błędu prognoz 1-krotnego wyprzedzenia, a nie dłuższych prognoz, w których to przypadku trend nie robi dużo różnicy Jeśli wszystko, co szukasz, to 1 - stop-ahead błędy, nie widzisz większego obrazu trendów w ciągu 10 lub 20 okresów Aby uzyskać ten model w zgodzie z naszą ekstrapolacją danych wzrokowych, możemy ręcznie dostosować stałą wygładzania trendu tak, aby używa krótszej linii odniesienia do szacowania tendencji Na przykład, jeśli zdecydujemy się na ustawienie 0 1, średni wiek danych wykorzystywanych do oszacowania tendencji lokalnej wynosi 10 okresów, co oznacza, że uśrednimy tendencję w ciągu ostatnich 20 okresów Oto jak wygląda planowana fabuła, jeśli ustawimy 0 1, zachowując 0 3 To intuicyjnie rozsądne dla tej serii, chociaż prawdopodobne jest, że prawdopodobne jest, że ekstrapolacja tej tendencji nastąpi więcej niż 10 okresów w przyszłości. porównanie modelu f lub dwóch modeli pokazanych powyżej oraz trzech modeli SES Optymalna wartość modelu SES wynosi około 0 3, ale uzyskuje się podobne wyniki z nieco większą lub mniejszą czułością na reakcję przy wartości 0 5 i 0 2. Wyrównanie liniowe Holta z alfa 0 3048 i beta 0 008. B Wyrównanie liniowe Holta z alfa 0 3 i beta 0 1. C Zwykłe wyrównanie wykładnicze z alfa 0 5. D Zwykłe wyrównanie wykładnicze z alfa 0 3. E Proste wyrównanie wykładnicze z alfa 0 2 Statystyki są prawie identyczne, więc naprawdę nie możemy dokonać wyboru na podstawie jednoetapowych prognoz błędów w próbce danych Musimy zwrócić uwagę na inne rozważania Jeśli uważamy, że ma sens oprzeć obecny oszacowanie tendencji na tym, co się wydarzyło w ciągu ostatnich 20 okresów, możemy stworzyć przypadek modelu LES z 0 3 i 0 1 Jeśli chcemy być agnostyczni na temat tego, czy istnieje tendencja lokalna, wówczas jeden z modeli SES mógłby łatwiej wyjaśnić, a także dać więcej middl e-of-the-road prognozy na najbliższe 5 lub 10 okresy Powrót na początek strony. Jakiego rodzaju tendencja-ekstrapolacja jest najlepsza w horyzontalnym lub liniowym Dane empiryczne sugerują, że jeśli dane zostały już skorygowane, jeśli jest to konieczne dla inflacji, to może być nierozsądne ekstrapolacja krótkoterminowych trendów liniowych bardzo daleko w przyszłość Trendy widoczne dziś mogą spowolnić w przyszłości ze względu na różne przyczyny, takie jak nieaktualność produktu, zwiększona konkurencja i cykliczne spowolnienie gospodarcze lub wzrost w przemyśle Z tego powodu prosty wykładniczy wygładzanie często wykonuje lepszą próbę poza próbą niż oczekiwano inaczej, pomimo jej naiwnej ekstrapolacji trendu horyzontalnego Często w praktyce często stosuje się modyfikacje trendu tłumiącego liniowego modelu wygładzania wykładniczego, aby wprowadzić w notatki konserwatyzmu tendencje tendencji tendencji tłumionej Model LES może być implementowany jako szczególny przypadek modelu ARIMA, w szczególności modelu 1,1,2 ARIMA. Można obliczyć przedziały ufności a długoterminowe prognozy wygenerowane przez wykładnicze modele wygładzania, biorąc pod uwagę je jako szczególne przypadki modeli ARIMA Należy uważać, że nie wszystkie programy obliczają prawidłowe przedziały ufności dla tych modeli prawidłowo Szerokość przedziałów ufności zależy od błędu RMS modelu, ii typu wygładzanie proste lub liniowe iii wartość s stała wygładzania s oraz liczba przewidywanych okresów W ogóle odstępy czasowe rozprzestrzeniają się szybciej, powiększając się w modelu SES i rozchodzą się znacznie szybciej, gdy liniowy, a nie prosty wygładzanie jest wykorzystywane Ten temat został omówiony w dalszej części sekcji ARIMA w notatkach. Powrót do początku strony.2 1 Przenoszenie modeli średnich modeli MA. Niektóre modele modeli ARIMA, znane jako modele ARIMA, mogą obejmować terminy autoregresji i średnie ruchy. W tygodniu 1, dowiedzieliśmy się, że termin autoregresji w modelu szeregowym czasowym dla zmiennej xt jest opóźnioną wartością xt Na przykład terminem autoregresji 1 x jest x t-1 pomnożony przez coeffi cient Ta lekcja definiuje średnie ruchome. Terminy średnie ruchome w modelu serii czasowej to błąd w przeszłości pomnożony przez współczynnik. Nagajmy nadmiar N 0, sigma 2w, co oznacza, że wagi są identyczne, niezależnie rozproszone, każdy z rozkładem normalnym o średniej 0 i tej samej wariancji. Średni model przenoszenia 1 rzędu, oznaczony jako MA 1. xt mu wt theta1w. Średni model rzędowy, oznaczony symbolem 2. xt mu wt theta1w theta2w. Średni model rzędu q, oznaczony przez MA q. xt mu wt theta1w theta2w kropki thetaqw. Uwaga Wiele podręczników i programów definiuje model z negatywnymi znakami przed warunkami To nie zmienia ogólnych teoretycznych właściwości modelu, chociaż odwraca znaki algebraiczne szacowanych wartości współczynników i nieokreślonych warunków w wzory dla ACF i wariancji Musisz sprawdzić oprogramowanie w celu sprawdzenia, czy użyto negatywnych lub pozytywnych oznaczeń, aby prawidłowo napisać szacowany model R korzysta z pozytywnych oznaczeń w modelu leżącym u podstaw, tak jak to ma miejsce. Teoretyczne właściwości serii czasowej z model MA 1.Należy zwrócić uwagę, że jedyną niższą wartością w teoretycznym ACF jest dla opóźnienia 1 Wszystkie pozostałe autokorelacje są równe 0 W ten sposób próbka ACF o znacznej autokorelacji tylko w punkcie 1 jest wskaźnikiem możliwego modelu MA 1. Dla zainteresowanych studentów, dowody dotyczące tych właściwości stanowią załącznik do tej broszury. Przykład 1 Załóżmy, że model MA 1 to xt 10 wt 7 w t-1, w którym przewyższa N 0,1 Tak więc współczynnik 1 0 7 Th e teoretyczne ACF jest podane przez. Za podstawie poniższego wykresu ACF przedstawiona jest teoretyczna ACF dla MA 1 z 1 0 7 W praktyce próbka wygrała t zazwyczaj zapewnia taki wyraźny wzór Używając R, symulowaliśmy n 100 wartości próbki przy użyciu modelu xt 10 w 7 w t-1 gdzie w t. iid N 0,1 Dla tej symulacji, szeregowy szereg wykresów z przykładowych danych Poniżej możemy powiedzieć wiele z tej wykresu. Przykładowy ACF dla symulacji dane następują Widzimy skok przy opóźnieniu 1, a następnie ogólnie wartości nieistotne dla opóźnień 1 Pamiętaj, że próbka ACF nie jest zgodna z teoretycznym wzorcem MA 1, co oznacza, że wszystkie autokorelacje dla opóźnień 1 będą 0 A inna próbka miałaby nieco odmienną próbkę ACF pokazaną poniżej, ale najprawdopodobniej miałyby tę samą szeroką charakterystykę. Właściwości teoretyczne serii czasowej z modelem MA 2. Dla modelu MA 2, teoretyczne właściwości są następujące. Zwróć uwagę, że jedyne niż zerowe wartości w teoretycznym ACF dotyczą opóźnień 1 i 2 Autocorrelat jony dla wyższych opóźnień są równe 0 Więc próbka ACF o znacznych autokorelacjach w przypadku opóźnień 1 i 2, ale nieistotne autokorelacje dla wyższych opóźnień wskazują na możliwy model MA2.iid N 0,1 Współczynniki to 1 0 5 i 2 0 3 Ponieważ jest to MA 2, ten teoretyczny ACF będzie miał wartości inne niż z opóźnieniami 1 i 2. Wartości dwóch niezależnych autokorelacji są takie, jak wykresy teoretycznego ACF. Jak prawie zawsze jest tak, dane próbki wygrały t zachowują się dość tak doskonale jak teoria Symulacja n 150 wartości próbek dla modelu xt 10 wt 5 w t-1 3 w t-2 gdzie w t. iid N 0,1 Seria szeregów czasowych wykresów danych jak następuje dane z próbki MA1 można wiele powiedzieć. Przykładowy ACF dla symulowanych danych Poniższy wzorzec jest typowy w sytuacjach, w których może być użyteczny model MA 2 Istnieją dwa statystycznie znaczące kolce przy opóźnieniach 1 i 2, a następnie nie - znaczne wartości dla innych opóźnień Zauważ, że z powodu błędu pobierania próbek próbka ACF nie była zgodna dokładny opis teoretyczny. ACF dla General MA q Models. A właściwość modeli MA q w ogóle jest to, że istnieją niezerowe autokorelacje dla pierwszych q opóźnień i autokorelacji 0 dla wszystkich opóźnień q. Niezależność połączenia między wartościami 1 i rho1 w modelu MA 1 W modelu MA 1, dla dowolnej wartości równej 1 1 odwzorowanie 1 daje tę samą wartość dla przykładu. Użyj 0 5 dla 1, a następnie użyj 1 0 5 2 dla 1 Otrzymasz rho1 0 4 w obu przypadkach. Aby zaspokoić teoretyczne ograniczenie zwane "invertibility", ograniczamy modele MA1 do wartości z wartością bezwzględną mniejszą niż 1 W podanym przykładzie, 1 0 5 będzie dozwoloną wartością parametru, podczas gdy 1 1 0 5 2 nie będzie. Odwracalność modeli MA. Nazwa modelu MA jest odwracalna, jeśli jest algebraiczna równoważna modelowi AR z nieskojarzonym zbiegiem Zbieżności, rozumiemy, że współczynniki AR spadają do 0 w czasie, gdy wracamy w czasie. Inwersalność jest ograniczeniem zaprogramowanym w oprogramowanie serii czasu używane do oszacowania współczynnika modele modeli z hasłami MA nie jest czymś, co sprawdzamy w analizie danych Dodatkowe informacje o ograniczeniu wstrząsów dla modeli MA 1 podano w dodatku. Uwagi wstępne Uwaga: Model MA q z określonym ACF jest tylko jeden model odwracalny Warunkiem koniecznym do odwrócenia jest to, że współczynniki mają takie wartości, że równanie 1- 1 y - - qyq 0 zawiera rozwiązania dla y, które leżą poza kołem jednostkowym. R Kod dla przykładów. W przykładzie 1 wykreślono teoretyczne ACF modelu xt 10 wt 7w t-1, a następnie symulowane n 150 wartości z tego modelu i wykreślono szereg próbkowania i próbkę ACF dla danych symulowanych Polecenia R służące do sporządzenia teoretycznej ACF były. acfma1 ARMAacf ma c 0 7, 10 opóźnień ACF dla MA 1 z theta1 0 7 opóźnień 0 10 tworzy zmienną o nazwie opóźnienia waha się od 0 do 10 opóźnień wydruku, acfma1, xlim c 1,10, ylab r, typu h, głównego ACF dla MA 1 z theta1 0 7 abline h 0 dodaje oś poziomą do wykresu Pierwsze polecenie określa ACF i zapisuje je w obiekcie o nazwie acfma1 naszego wyboru. Konstrukcja poleceń poleceń trzeciego polecenia jest opóźniona w stosunku do wartości ACF dla opóźnień 1 do 10 Parametr ylab etykietuje na osi y, a główny parametr ustawia wartość tytuł na wykresie. Aby zobaczyć wartości liczbowe ACF wystarczy użyć polecenia acfma1. Symulacje i wykresy zostały wykonane za pomocą następujących poleceń. lista ma c 0 7 Symuluje n 150 wartości z MA 1 x xc 10 dodaje 10, aby uzyskać średnio 10 domyślnych wartości symulacji dla x wykresu x, typ b, główne Symulowane dane MA 1 acf x, xlim c 1,10, główne ACF dla symulacji dane przykładowe. W przykładzie 2 wykreślono teoretyczny ACF modelu xt 10 wt 5 w t-1 3 w t-2, a następnie symulowano n 150 wartości z tego modelu i wykreślono szereg próbkowania i próbkę ACF dla symulacji dane Zastosowano komendy R. acfma2 ARMAacf ma c 0 5,0 3, acfma2 opóźnienia 0 10 opóźnień w wydruku, acfma2, xlim c 1,10, ylab r, typ h, główne ACF dla MA 2 z theta1 0 5, theta2 0 3 abline h 0 lista ma c 0 5, 0 3 x xc 10 wykres x, typ b, główny Symulowany model MA 2 Seria acf x, xlim c 1,10, główny ACF dla symulowanego MA 2 Dane. Podpis Dowodu Własności MA 1 Dla zainteresowanych studentów, oto dowody na teoretyczne właściwości modelu MA1. Tekst zmienności xt tekst mu wt theta1 w 0 tekst tekst wt tekstowy theta1w sigma 2w theta 21 sigma 2w 1 theta 21 sigma 2w. W przypadku h 1, poprzedni wyrażenie 1 w 2 Dla każdego h 2 , poprzedni wyrażenie 0 Powodem jest to, że z definicji niezależności wt E wkwj 0 dla dowolnego kj Ponadto, ponieważ wt mają średnie 0, E wjwj E wj 2 w 2. Dla serii czasowych. Przyprowadź ten wynik, aby uzyskać ACF podany powyżej. Można odwrócić model MA jest to, że można napisać jako nieskończony wzór AR zamówienia, które zbieżne tak, że współczynniki AR zbiegają się do 0, gdy poruszamy się nieskończenie z powrotem w czasie Pokażemy invertibility dla modelu MA 1. Następnie relacja substytucyjna 2 dla t-1 w równaniu 1. 3 zt wt theta1 z - theta1w wt theta1z - theta2w. At równanie t-2 staje się równe 2. Następnie zastępujemy relację 4 dla w t-2 w równaniu 3. zt wt teta1 z - theta 21w wagi theta1z - theta 21 z - theta1w wagi theta1z - theta1 2z theta 31w. Jeśli mielibyśmy kontynuować nieskończoność otrzymamy model AR bez końca. zt wt theta1 z-theta 21z theta 31z - theta 41z dots. Note jednak należy pamiętać, że jeśli 1 1, współczynniki mnożące opóźnienia z będą wzrastać nieskończenie w miarę przesuwania się w czasie Aby temu zapobiec, potrzebujemy 1 1 Jest to warunek niewymiennego modelu MA 1. Model nieskoordynowanego zamówienia MA. W tygodniu 3 zobaczymy, że model AR1 można przekształcić w model MA bez końca. xt - mu wt phi1w phi 21w kropki phi k1 w kropkach sum phi j1w. Powyższe sumienie przeszłych hałasu białego jest znane jako przyczyna reprezentacji AR1 Innymi słowy, xt jest specjalnym typem MA o nieskończonej liczbie terminów cofanie się w czasie To jest nazywany nieskończonym rzędem MA lub MA Skończone rzędu MA jest nieskończonym porządkiem AR i dowolnym skończonym zamówieniem AR jest nieskończonym zleceniem MA. Recall w tygodniu 1 zauważyliśmy, że wymóg stacjonarnego AR 1 jest taki, 1 1 Niech s obliczy Var xt używając reprezentacji przyczynowej. W ostatnim kroku używa się podstawowego faktu o seriach geometrycznych, które wymagają phi1, w przeciwnym wypadku szeregowe rozbieżności.
Comments
Post a Comment